
Skip Lists
Daniel F. Savarese
Last Updated: 2012-08-10

Copyright © 2001, 2012 Daniel F. Savarese1

Note

This article was published originally in the April
2001 issue of Java Pro with the unenlightening
title “The Sort-ed Details.” It was written when
JDK 1.3 was the latest available Java release,
years before ConcurrentSkipListMap
appeared in JDK 1.6. The example code is in-
structional and does not implement all of the
Java Collections interfaces required for a produc-
tion-use implementation. Even though you will
want to useConcurrentSkipListMap and
ConcurrentSkipListSet instead of imple-
menting your own skip list, the article remains
useful for those who would like an overview of
how a skip list works.

Changes. The code examples have been up-
dated to use generics, an exercise of little value
that makes the code harder to read. I have also
added timings for ConcurrentSkipList-
Map to the driver program so you can see that
the performance properties described in the art-
icle are implementation-independent. Depending
on the hardware and JVM used—and the order
in which the tests are run—Concurrent-
SkipListMap executes put, get, and re-
move slower or faster than the article's code. In
all cases, the execution times are the same base-
2 order of magnitude (i.e., less than a factor of
two difference) as the example code, which is
two to three times slower than TreeMap for
the tests performed.

Sorting and Searching

Sorting continues to be one of the most common opera-
tions performed by computer programs. Java programs
are no exception. The Collections Framework recognizes
the fundamental need for ordering computer data by
providing the Comparable and Comparator inter-
faces. If you cannot determine the natural ordering
between two objects, you cannot sort a collection of ob-
jects. The Comparable interface allows an object to
control its ordering by implementing the com-

pareTo(Object)method. The Comparator inter-
face allows you to implement acompare(Object,Ob-
ject) method that returns the ordering of an arbitrary
pair of objects that may not have been designed with or-
dering in mind.

A common approach to ordering data is to store the data
in a container, be it an array or a list of some kind, and
sort it as needed. Arrays are often difficult to work with
when you don't know howmany array elements you will
need to store all of your data. TheVector andArrayL-
ist classes—each of which implements the
java.util.List interface—resolve this difficulty
by providing dynamically growing array-based storage.
Array data can be sorted with java.util.Ar-
rays.sort() and List data can be sorted with
java.util.Collections.sort(). Once the data
is sorted, you can search it relatively efficiently in
O(log2(n)) time using a binary search algorithm, imple-
mented by Arrays.binarySearch and Collec-
tions.binarySearch.

Searching for data in linear storage containers, such as
arrays, is inefficient. In the worst case it requires the ex-
amination of every item of data. If the data is sorted, you
can take advantage of a binary search, but you still have
to pay the cost of sorting the data. For dynamically
changing collections of data, that cost is not acceptable.
An alternative is to use a data structure that maintains
the ordering between its elements as those elements are
inserted and removed.

Mappings, such as those represented by the
java.util.Map interface, associate a set of keys with
a set of values. Sometimes all we care about is the ability
to quickly retrieve a value associated with a given key.
Should we want to access the mapped values based on
the natural ordering of their keys, or define a new
submapping over a range of key values, we have to sort
the keys. In these cases, an ordered mapping, represented
by the java.util.SortedMap interface, is more
appropriate. The java.util.TreeMap class imple-
ments the SortedMap interface using a red-black tree,
a type of balanced binary search tree that allows both ef-
ficient searching and ordered traversal. There are many
alternative data structures that could have been used for

1 https://www.savarese.org/

1

https://www.savarese.org/
https://www.savarese.org/

a default SortedMap implementation in the Collections
Framework. Implementing one of them may shed some
light on why the red-black tree was chosen over the
available alternatives.

Enter the Skip List

Figure 1 contains the source for an implementation of a
probabilistically balanced container called a skip list.
Skip lists were invented by Bill Pugh, a professor at the
University of Maryland, in 1987 (see “Skip lists: a prob-
ablistic alternative to balanced trees,” Communications
of the ACM, Vol. 33, No. 6, June 1990), who observed
that a hierarchy of linked lists is equivalent to a binary
tree. You can think of a skip list as a set of linked lists
stacked one on top of the other.

List Arrays

It's easier to get a handle on skip lists by studying a spe-
cial case called a list array. In a list array, the linked list
at the lowest level (level 0) contains all the elements of
the list, like a normal linear linked list. The list at the
second level contains pointers to every other element.
The third level contains pointers to every fourth element,
and so on. Each level contains pointers to n/2l elements,
where n is the number of elements in the list and l is the
level number starting from 0.

Searching for a key in a list array can be done in
O(log2(n)) time. Starting at the topmost level, traverse
the list until you encounter an element greater than or
equal to the search key. If the element is equal to the
search key, you're done. If not, go down a level from the
previous element and repeat the process. If you reach
level 0 without finding the key, it's not in the list and
you're done. Assuming a list of n elements, the search
requires nomore than 2log2(n) comparisons because there
are log2(n) lists and you compare no more than two ele-
ments before moving to a lower level. Given the structure
of the list array, the search is analogous to a binary search,
although it incurs twice as many comparisons.

The list array search algorithm is implemented in the
get() method in Figure 1. Notice that a dummy list
header and tail are used to avoid treating boundary con-
ditions as special cases. The use of the MinimumKey
and MaximumKey classes ensures that the head of the
list will always appear to be the lowest-valued element
and the tail of the list will appear to be the highest-valued
element.

Although searching exhibits a running time competitive
with tree-based techniques, insertions and deletions do

not perform as well. If you were to insert a key at the
beginning of the list, you would need to adjust the level
of every other element in the list because a list array re-
stricts pointers at a given level to skip exactly one element
in the list at the next lowest level.

Probabilistic Balancing

It turns out that you can achieve similar search perform-
ance andmuch better insertion and deletion performance
if you can guarantee that the average number of elements
skipped is one, instead of the exact number. A skip list
is a list array that provides such a guarantee by randomly
generating the skip increment for each level when you
insert a key. To insert a key, use the search algorithm to
locate where to perform the insertion. If the search suc-
ceeds and duplicates are disallowed, simply replace the
value associated with the key. If the search fails, you
should insert the key immediately after the last node
visited whose value was less than the value to be inserted.

While you are searching, keep track of the last node vis-
ited at each level so that you can update their links after
the insertion. Before you insert the key, you have to de-
cide at which levels to insert it (note that every key must
be inserted at level 0). You do this by generating a ran-
dom number between 0 and 1. If the value is less than
0.5, stop. If the value is equal or greater, go up an addi-
tional level and insert the key. This generates another
random number and repeats the process. The random
number generation is implemented in __random-
Level() (but uses a probability of 0.25 instead of 0.5)
in Figure 1, and the insertion process is implemented in
put().

Skip lists can become relatively deep, but the probablistic
nature of the balancing makes it unlikely. You can set a
cap on the depth to keep small lists shallow. The maxim-
um level should be set so that the expected number of
elements at the maximum level is 1. If the probability for
level skipping is p, then the maximum level is log1/p(n).
The example driver in Figure 2 sets n to 220 and p to 1/4,
making the maximum level equal to 10. Deletions work
in much the same way as insertions, as shown in the re-
move() method from Figure 1.

Performance

Figure 2 contains a driver program that tests the
SkipList class from Figure 1, comparing its perform-
ance to TreeMap. The test is unscientific and should
really explore a range of values for both NUM_LEVELS
and NUM_ELEMENTS. Nonetheless, it is good enough
to get a rough picture of skip list behavior.

2

Skip Lists

If you run the driver, you will find that for large numbers
of elements, the SkipList class takes roughly twice
as long as TreeMap to perform insertions, deletions,
and searches. Insertions take longer because of the time
spent generating random numbers. Both insertions and
deletions suffer because they have to maintain the
__update[] array and index into an array on every
call to getNext(). Array indexing incurs a higher cost
than accessing a left or right child in a tree because of
run-time array bounds checking. All of the operations
suffer from the extra comparisons required when travers-
ing a skip list. Even though both skip list and tree
searches are O(log2(n)), the constant factors associated
with skip list searches in Java are greater.

Straight-up in-order list traversal—the primary reason
for using an ordered mapping—is comparable in both
situations. You would expect it to be more efficient in a
skip list because all you have to do is follow all of the
links at the lowest level, whereas a tree requires you to

perform potentially costly comparisons. Array indexing
again appears to be the culprit. For smaller numbers of
elements, SkipList is more competitive.

One of the reasons advocated for using skip lists is that
they are easier to implement. I find that they are no easier
to implement than red-black trees. They also require more
storage, which is generally undesirable. Even so, their
worst-case performance is independent of the data they
store. If you enter sorted data in sequence to a binary tree
(not a red-black tree), it degenerates to a linear linked
list. With a skip list, your performance is protected by
the probabilistic nature of the link construction. Some of
the alternatives to skip lists and red-black trees are AVL
trees, splay trees, and 2-3 trees. The red-black tree was
perhaps the best choice for implementing a general-pur-
pose ordered mapping for the core APIs, but Java makes
a capable playground for exploring the alternatives.

Code Listings

3

Skip Lists

Figure 1. SkipList Class

package example;

import java.util.Random;
import java.util.Iterator;
import java.util.NoSuchElementException;

// SkipListNode is a container for a key to value mapping in a SkipList.
final class SkipListNode<Key extends Comparable<Key>,Value> {
Comparable<Key> _key;
Value _value;
SkipListNode<Key,Value>[] _next;

@SuppressWarnings({"rawtypes","unchecked"})
SkipListNode(Comparable<Key> key, Value value, int level) {
_next = (SkipListNode<Key,Value>[])new SkipListNode[level+1];
_key = key;
_value = value;

}

public int getLevel() { return (_next.length - 1); }

public Comparable<Key> getKey() { return _key; }

public void setValue(Value value) {
_value = value;

}

public Value getValue() { return _value; }

public void setNext(int level, SkipListNode<Key,Value> node) {
_next[level] = node;

}

public SkipListNode<Key,Value> getNext(int level) {
return _next[level];

}
}

public class SkipList<Key extends Comparable<Key>, Value> {
private int __level, __numLevels;
private SkipListNode<Key,Value> __head, __tail;
private SkipListNode<Key,Value>[] __update;
private Random __random;

// A class that represents a key with a value of negative infinity.
private final class MinimumKey implements Comparable<Key> {
public int compareTo(Key obj) {

if(obj == MinimumKey.this) {
return 0;

}

return -1;
}

}

// A class that represents a key with a value of positive infinity.
private final class MaximumKey implements Comparable<Key> {
public int compareTo(Key obj) {

if(obj == MaximumKey.this) {
return 0;

}

4

Skip Lists

return 1;
}

}

private final class SkipListIterator implements Iterator<Value> {
private SkipListNode<Key,Value> __next;

SkipListIterator() {
__next = __head.getNext(0);

}

public boolean hasNext() {
return (__next != __tail);

}

public Value next() {
Value result;

if(__next == __tail) {
throw new NoSuchElementException();

}

result = __next.getValue();
__next = __next.getNext(0);

return result;
}

public void remove() {
throw new UnsupportedOperationException();

}
}

private int __randomLevel() {
int level = 0;

// Hardcoded probabilty of 1/4. Returns at most __level + 1.
while(__random.nextInt(4) == 0 && level <= __level) {
++level;

}

if(level >= __numLevels) {
level = __numLevels - 1;

}

return level;
}

/**
* Creates a SkipList with a given maximum number of levels. This
* number should be lg(n) - 1, where n is the number of nodes you
* expect the list to contain.
*/
@SuppressWarnings({"rawtypes","unchecked"})
public SkipList(int numLevels) {
__level = 0;
__numLevels = numLevels;
__random = new Random(System.currentTimeMillis());
__head = new SkipListNode<Key,Value>(new MinimumKey(), null, numLevels - 1);
__tail = new SkipListNode<Key,Value>(new MaximumKey(), null, numLevels - 1);
__update = (SkipListNode<Key,Value>[])new SkipListNode[numLevels];

for(int i = 0; i < numLevels; ++i) {
__head.setNext(i, __tail);

5

Skip Lists

__tail.setNext(i, null);
__update[i] = __head;

}
}

public Iterator<Value> iterator() {
return new SkipListIterator();

}

/**
* Returns the value associated with the key, null if the list
* doesn't contain the key.
*/
public Value get(Key key) {
int level, comparison;
SkipListNode<Key,Value> node, nextNode;
Comparable<Key> nextKey;

node = __head;

for(level = __level; level >= 0; --level) {
do {
nextNode = node.getNext(level);
nextKey = nextNode.getKey();
comparison = nextKey.compareTo(key);

if(comparison >= 0) {
break;

}

node = nextNode;
} while(true);

if(comparison == 0) {
return node.getValue();

}
}

return null;
}

/**
* Adds a key/value pair to the list. If the key is already in the
* list, the existing value is replaced with the new value and the
* old value is returned. Returns null if the key wasn't already
* present (this is a problem if you store null values in the list).
*/
public Value put(Key key, Value value) {
int level, newLevel, comparison;
SkipListNode<Key,Value> node, nextNode;
Comparable<Key> nextKey;
Value result = null;

node = __head;

for(level = __level; level >= 0; --level) {
do {
nextNode = node.getNext(level);
nextKey = nextNode.getKey();
comparison = nextKey.compareTo(key);

if(comparison >= 0) {
break;

}

6

Skip Lists

node = nextNode;
} while(true);

if(comparison == 0) {
result = nextNode.getValue();
nextNode.setValue(value);

return result;
}

__update[level] = node;
}

// The key isn't in the list.
newLevel = __randomLevel();
if(newLevel > __level) {
// newLevel is always __level + 1 at this point so
// we don't have to update levels in between.
__update[newLevel] = __head;
__level = newLevel;

}

node = new SkipListNode<Key,Value>(key, value, newLevel);
for(level = 0; level <= newLevel; ++level) {
node.setNext(level, __update[level].getNext(level));
__update[level].setNext(level, node);

}

return result;
}

/**
* Removes the key an associated value from the list and returns the
* value that was removed. Returns null if the key wasn't found.
*/
public Value remove(Key key) {
int level, comparison = -1;
SkipListNode<Key,Value> nextNode = null, node;
Comparable<Key> nextKey;
Value result = null;

node = __head;

for(level = __level; level >= 0; --level) {
do {
nextNode = node.getNext(level);
nextKey = nextNode.getKey();
comparison = nextKey.compareTo(key);

if(comparison >= 0) {
break;

}

node = nextNode;
} while(true);

__update[level] = node;
}

if(comparison == 0) {
int maxLevel = nextNode.getLevel();
result = nextNode.getValue();

for(level = 0; level <= maxLevel; ++level) {

7

Skip Lists

__update[level].setNext(level, nextNode.getNext(level));
}

// Reset uppermost level if there are no more items
if(maxLevel == __level && __update[maxLevel] == __head &&

__head.getNext(maxLevel) == __tail)
{
--__level;

}
}

return result;
}

}

8

Skip Lists

Figure 2. SkipSearch Class

package example;

import java.util.Iterator;
import java.util.Random;
import java.util.TreeMap;
import java.util.concurrent.ConcurrentSkipListMap;

public class SkipSearch {

// An interface to make generic timings possible given that SkipList
// does not implement java.util.Map.
interface SimpleMap<Key extends Comparable<Key>, Value> {
public Value put(Key key, Value value);
public Value get(Key key);
public Value remove(Key key);
public Iterator<Value> iterator();

}

public static class MySkipList<Key extends Comparable<Key>, Value>
extends SkipList<Key,Value> implements SimpleMap<Key, Value>

{
public MySkipList(int numLevels) {
super(numLevels);

}
public Value put(Key key, Value value) {
return super.put(key, value);

}
public Value get(Key key) {
return super.get(key);

}
public Value remove(Key key) {
return super.remove(key);

}
public Iterator<Value> iterator() {
return super.iterator();

}
}

@SuppressWarnings("serial")
public static class MyTreeMap<Key extends Comparable<Key>, Value>
extends TreeMap<Comparable<Key>, Value> implements SimpleMap<Key, Value>

{
public Value put(Key key, Value value) {
return super.put(key, value);

}
public Value get(Key key) {
return super.get(key);

}
public Value remove(Key key) {
return super.remove(key);

}
public Iterator<Value> iterator() {
return super.values().iterator();

}
}

@SuppressWarnings("serial")
public static class MySkipListMap<Key extends Comparable<Key>, Value>
extends ConcurrentSkipListMap<Comparable<Key>, Value> implements SimpleMap<Key, Value>

{
public Value put(Key key, Value value) {
return super.put(key, value);

}

9

Skip Lists

public Value get(Key key) {
return super.get(key);

}
public Value remove(Key key) {
return super.remove(key);

}
public Iterator<Value> iterator() {
return super.values().iterator();

}
}

public static final <K extends Comparable<K>>
long timePuts(SimpleMap<K,K> map, K[] keys)
{
long start, finish;

start = System.currentTimeMillis();

for(int i = 0; i < keys.length; ++i) {
map.put(keys[i], keys[i]);

}

finish = System.currentTimeMillis();

return (finish - start);
}

public static final <K extends Comparable<K>,V>
long timeGets(SimpleMap<K,V> map, K[] keys, Random random)
{
long start, finish;
// Only get a fraction of the keys.
int max = keys.length >> 4;

if(max <= 0) {
max = keys.length;

}

start = System.currentTimeMillis();

for(int i = 0; i < max; ++i) {
map.get(keys[random.nextInt(keys.length)]);

}

finish = System.currentTimeMillis();

return (finish - start);
}

public static final <K extends Comparable<K>, V>
long timeRemoves(SimpleMap<K,V> map, K[] keys, Random random)
{
long start, finish;
// Only remove a fraction of the keys.
int max = keys.length >> 4;

if(max <= 0) {
max = keys.length;

}

start = System.currentTimeMillis();

for(int i = 0; i < max; ++i) {
map.remove(keys[random.nextInt(keys.length)]);

}

10

Skip Lists

finish = System.currentTimeMillis();

return (finish - start);
}

public static final <K extends Comparable<K>,V>
long timeIteration(SimpleMap<K,V> map)
{
long start, finish;
Iterator<V> iterator = map.iterator();

start = System.currentTimeMillis();

while(iterator.hasNext()) {
iterator.next();

}

finish = System.currentTimeMillis();

return (finish - start);
}

public static final Integer[] makeRandomKeys(int iterations) {
Integer[] keys = new Integer[iterations];
Random random = new Random(System.currentTimeMillis());

for(int i = 0; i < iterations; ++i) {
keys[i] = new Integer(random.nextInt(iterations));

}

return keys;
}

public static final <Key extends Comparable<Key>>
void doTimings(String name, SimpleMap<Key,Key> map, Key[] keys, Random random)
{
long time;

System.out.println();
System.out.println(name);
System.out.println("\n puts (ms)");
time = timePuts(map, keys);
System.out.println(" total : " + time);
System.out.println(" average: " +

(float)time/(float)keys.length);
System.out.println("\n gets (ms)");
time = timeGets(map, keys, random);
System.out.println(" total : " + time);
System.out.println(" average: " +

(float)time/(float)keys.length);
System.out.println("\n iteration (ms)");
time = timeIteration(map);
System.out.println(" total : " + time);
System.out.println(" average: " +

(float)time/(float)keys.length);
System.out.println("\n removes (ms)");
time = timeRemoves(map, keys, random);
System.out.println(" total : " + time);
System.out.println(" average: " +

(float)time/(float)keys.length);
}

public static final int NUM_ELEMENTS = 1024 * 1024;
// Expected number of elements is 4^10

11

Skip Lists

public static final int NUM_LEVELS = 10;

public static final void main(String[] args) {
MySkipList<Integer,Integer> skipList =
new MySkipList<Integer,Integer>(NUM_LEVELS);

MyTreeMap<Integer,Integer> treeMap = new MyTreeMap<Integer,Integer>();
MySkipListMap<Integer,Integer> skipListMap =
new MySkipListMap<Integer,Integer>();

Integer[] keys = makeRandomKeys(NUM_ELEMENTS);
long time = System.currentTimeMillis();
// Create identical pseudo-random number sequences
Random skipRand = new Random(time);
Random treeRand = new Random(time);
Random slmapRand = new Random(time);

doTimings("SkipList", skipList, keys, skipRand);
doTimings("TreeMap", treeMap, keys, treeRand);
doTimings("ConcurrentSkipListMap", skipListMap, keys, slmapRand);

}
}

12

Skip Lists

	Skip Lists
	Sorting and Searching
	Enter the Skip List
	List Arrays
	Probabilistic Balancing

	Performance
	Code Listings

