Approximation Algorithms

Daniel F. Savarese

Last Updated: 2012-05-23
Copyright © 2002, 2012 Daniel F. Savarese!

Note

This article was published originally in the
November 2002 issue of Java Pro with the title
“Close to Correct.” The code examples in the
column were an afterthought. My objective was
to give a high-level overview of NP-complete-
ness and the motivation for approximation al-
gorithms, with the hope that the reader would
delve into the topic in more depth on his own.

The original article made enough of an impres-
sion to have been cited as a reference in the
following paper:

J. Martens, David V. Judge,
and Jimmy A. Bigelow, “Un-
certainties Associated With
Many-Port (>4) S-Parameter
Measurements Using a Four-
Port Network Analyz-
er,”[EEE Transactions on
Microwave Theory and
Techniques, vol. 52, no. 5,
pp. 1361-1368, May 2004.

The set-covering algorithm demonstrated in the
code example was used to choose an optimal
collection of vector network analyzer port calib-
rations.

Changes. The code examples have been up-
dated to use generics and the so-called “en-
hanced for loop.”

Algorithms vis-a-vis Everyday Program-
ming

Programming is often more about writing business rules
and less about implementing, or even inventing, al-
gorithms to solve problems more efficiently. Program-
ming involves using a third-party API or designing an
API more than it involves devising data structures that
make optimal use of available system resources. Enter-
prise development is concerned more with systems integ-

! https://www.savarese.org/

ration than systems optimization. Perhaps programming
is now less about computer science and more about soft-
ware engineering—if the two can even be considered
separately.

It's all right that most programming tasks do not require
deep mathematical or algorithmic insights. Most com-
monly required algorithms and data structures are already
implemented in standard libraries such as the C++
Standard Template Library or the Java core APIs. When
you write a business application, you don't want to get
hung up on the details of open address hashing and linear
probing; you just want access to a ready-made container
that maps a key to a value relatively efficiently.

Modularization yields reuse and reuse yields greater
productivity. Just look at how game programming has
changed since the late 1980s and early '90s. Game pro-
gramming used to require a more than superficial know-
ledge of computer graphics algorithms as well as plat-
form-specific systems programming esoterica, such as
how to use ModeX graphics modes with DOS. Today,
you don't have to know a thing about computer graphics
theory; pick your favorite graphics library and games
programming API and you can focus on the business of
writing a great game rather than great graphics routines.
Heck, most of the optimization has moved into the
graphics hardware anyway.

With a preponderance of libraries available for most
common programming tasks, are we running the risk of
forgetting how basic algorithms work? After all, you
don't need to know anything about internal combustion
engines to drive a car; and you don't need to know any-
thing about red-black trees to use a TreeMap. I have
worked with programmers who lacked a knowledge of
fundamental algorithms and data structures, yet this did
not seem to impair the quality of their work. Evidently,
when you're translating Simple Object Access Protocol
(SOAP) messages into SQL database queries, knowing
how to implement Dijkstra's algorithm to solve the single-
source shortest-paths problem doesn't help you at all.
You can apply basic logical thought successfully to solve
everyday programming problems; this may explain why
s0 many programmers are self-taught.

https://www.savarese.org/
https://www.savarese.org/

Approximation Algorithms

Although I don't think programmers as a group will forget
how fundamental algorithms work, the economics of
software development dictates that only a small percent-
age of programmers will have experience implementing
them. Otherwise, we'd all be spending our time reinvent-
ing the proverbial wheel. Besides, every resourceful
programmer understands the benefit of maintaining a
technical reference library. If you don't know how to do
something, just look it up. Even if you're never going to
implement a particular algorithm, however, it can be
helpful to know in advance how it works so that, for ex-
ample, you know when to use a TreeMap instead of a
HashMap.

Polynomial-Time Algorithms

The ability to recognize when a particular programming
task cannot be solved efficiently can also be helpful. Not
every problem can be solved exactly without resorting
to a brute-force or exponential-time algorithm. Many
real-world applications can tolerate such an approach
because they use small amounts of input data that prevent
the algorithms from taking an inordinately long time to
finish running. Equal or greater numbers of applications
use large input data sets and cannot tolerate the excessive
execution times of exponential-time algorithms. In these
cases, it is necessary to settle for an approximately correct
answer using what is known as an approximation al-
gorithm.

How can you tell if a problem is so intractable as to ne-
cessitate the use of an approximation algorithm? Most
fundamental algorithms have worst-case running times
that can be expressed as a polynomial function of the size
of their inputs. In other words, the running time can be
represented as a polynomial of the form an® + bn*! +
en®? ..., where n is the size of the input to the algorithm.
For example, most sorting algorithms have a worst-case
running time of knlog(n) (this is less than kn? and there-
fore polynomial time), where n is the number of items
being sorted. The class of problems that can be solved
by algorithms with polynomial running times is said to
belong to the complexity class P. Algorithms in class P
are considered tractable.

The composition of two polynomial-time algorithms
yields a polynomial-time algorithm. This is an important
property because it tells you that a program that makes
use of only polynomial-time algorithms will have a run-
ning time no worse than the highest order polynomial of
the running times of its component algorithms. Under-
standing polynomial-time algorithm composition helps
you determine where to focus your attention when optim-
izing a program. There's little point in improving the

running time of an algorithm from 2n? to n? when your
program's overall running time is dominated by an al-
gorithm with a running time of .

NP-Complete Problems

Another class of computational problems commonly en-
countered cannot be solved in polynomial time, but the
correctness of their solutions can be verified in polynomi-
al time. These problems are said to belong to the complex-
ity class NP, which stands for nondeterministic polyno-
mial time. All elements of class P are a subset of NP.
That is, any problem that can be solved by a polynomial-
time algorithm can have its solution verified by a polyno-
mial-time algorithm. Elements of a special set of prob-
lems in NP possess the property that if they can be solved
in polynomial time, then all problems in NP can be solved
in polynomial time; and therefore it will be true that
NP=P. These problems are called NP-complete and can
be thought of as the hardest problems in NP. It is believed
that NPZP, and no polynomial time algorithm has yet
been found to solve an NP-complete problem. But it has
not been proven that none exists.

When you run into an NP-complete problem, you know
you can't compute an exact answer in a reasonable amount
of time; but how do you know you've run into an NP-
complete problem? The handy thing about NP-complete
problems is that if you can show that a problem is equi-
valent to another problem already known to be NP-com-
plete (a process known as reduction), you've proven the
problem is NP-complete. That leads to the crux of this
column. You can't really figure out if a problem is NP-
complete if you aren't already familiar with NP-complete
problems. It behooves us as programmers, whether self-
trained or formally instructed, to become familiar with
the theory of algorithms. Even if you never have to im-
plement classic algorithms or work with concepts such
as NP-completeness, a familiarity with a wide variety of
algorithms gives you the ability to recognize related
problems and adapt an algorithm to solve a new problem
you encounter. You can also identify which algorithm
implementations are most appropriate to use in your
programs if you have a good understanding of how their
running times and memory use vary based on input size
and, in the case of data structures, the application of
specific operations.

Three frequently occurring NP-complete problems are
the travelling-salesman problem, the subset-sum problem,
and the set-covering problem.

Approximation Algorithms

The Travelling-Salesman

In the travelling-salesman problem, a salesman has to
visit a set of cities, but can visit each city only once, ex-
cept for the last city in the tour, which must be the same
as the first city he started from. The total cost of visiting
all of the cities must be the minimal possible cost. The
cost may be in terms of distance, fuel, money, or whatever
metric is appropriate to the real-world situation. Independ-
ent of the nature of the cost metric, the problem is
modeled as a set of vertices connected by edges with as-
sociated weights, forming a graph. The travelling-sales-
man problem is encountered in logistics systems that
must deliver goods or pick up goods and return to a
central distribution location.

Subset-Sum

The subset-sum problem asks if a subset of numbers in
a set of positive integers adds up exactly to a given value.
A relaxed version of the problem tries to identify a subset
of numbers that adds up to a maximum value no greater
than a given value. This problem is, again, encountered
in logistics systems, where you may be trying to load up
vehicles with as many packages as possible without ex-
ceeding the weight limit each vehicle can carry. UPS and
FedEx are probably masters at approximating solutions
to the travelling-salesman and subset-sum problems.

Set-Covering

Explaining the set-covering problem is a little more
verbose. Suppose you have a set of items called X and a
family of subsets of those items called . The set-cover-
ing problem attempts to find a set of subsets contained
in F that together contain each of the elements in X at
least once. Furthermore, this covering set of subsets must
contain the minimal number of subsets necessary to
cover the elements in X. This problem occurs in many
resource-allocation activities. A common example is
where you have a mission, project, or assignment that
requires a certain set of skills to complete. Given a set of
available personnel with different sets of skills, you want
to assemble a team with the necessary skills composed
of the least number of personnel. It is probably acceptable

to solve this instance of the problem by brute force, but
it is probably not acceptable for other instances, such as
when trying to assemble a balanced stock portfolio based
on various stock properties instead of personnel skills.

After you've identified a problem as being intractable,
you can set about developing an approximation algorithm
that yields a reasonably accurate and useful solution.
Figure 1 and Figure 2 implement an approximate solution
to the set-covering problem, where the Enterprise com-
puter selects an away party based on a set of skills re-
quired for a mission. Figure 1 defines an Employee
class that associates a name with a set of skills, represen-
ted as strings. Figure 2 implements a greedy algorithm
in the setCover () method to solve the problem.
Greedy algorithms solve problems by making decisions
that seem optimal at each stage of the algorithm. In this
case, setCover () always selects the employee with
the greatest number of skills that have yet to be filled by
another employee. It does not guarantee a solution that
uses a minimal number of personnel, but it does guarantee
that all the required skills will be covered if possible. The
running time of the algorithm is linear and proportional
to the sum of the number of skills possessed by each
employee.

Complexity theory and the analysis of algorithms is
widely shunned—even by computer science stu-
dents—which is why I've used the absolute minimum
amount of math to convey the general ideas behind the
need for approximation algorithms. A problem I've found
with the presentation of approximation problems is that
NP-complete problems are often presented in terms of
graphs and vertices or other very abstract terms. It's easy
to come away thinking you'll never use the stuff. But
consider the development of personalization systems in
e-commerce.” If a customer has indicated a set of interests
and you want to make recommendations of products that
cover those interests with some constraint, be it a minimal
set of products or a set of products with a maximal price,
you've run right into a variation of the set-covering
problem. Once you become familiar with NP-complete
problems, or a variety of problems solvable by polynomi-
al-time algorithms, you see them pop up all over the
place.

2E-commerce personalization was trendy in 2002; in 2012 an example relating to social media would be more relevant.

Approximation Algorithms

Figure 1. Employee Class

package example;

import
import
import

public

java.util.Collections;
java.util.Set;
java.util.HashSet;

class Employee {

String name;
Set<String> skills;

public Employee (String name) {
this.name = name;
skills = new HashSet<String>();

public Employee addSkill (String skill) {
skills.add (skill);
return this;

public Set<String> getSkills() {
return Collections.unmodifiableSet (skills);

public String toString() {
StringBuffer buffer = new StringBuffer();

buffer.append (name) ;
buffer.append ("\nSkills:\n");

for (String skill : skills) {
buffer.append ("\t") ;
buffer.append(skill) ;
buffer.append ("\n") ;

return buffer.toString();

Approximation Algorithms

Figure 2. SetCover Class
package example;

import java.util.Collection;
import java.util.Set;

import java.util.HashSet;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Arrays;

public final class SetCover {

public static

<T> Set<T> maximizingSubset (Set<T> set, Collection<Set<T>> subsets) {
int maxSize = 0;
Set<T> setCopy = new HashSet<T>();
Set<T> maximizingSet = null;

for (Set<T> subset : subsets) ({
setCopy.clear();
setCopy.addAll (set) ;
setCopy.retainAll (subset) ;

if (setCopy.size () > maxSize) {
maxSize = setCopy.size();
maximizingSet = subset;

return maximizingSet;

public static

<T> Collection<Set<T>> setCover (Set<T> set, Collection<Set<T>> subsets) {
Set<T> setCopy = new HashSet<T>();
Collection<Set<T>> subsetsCopy = new LinkedList<Set<T>>();
Collection<Set<T>> setCover = new LinkedList<Set<T>>();

setCopy.addAll (set) ;
subsetsCopy.addAll (subsets) ;

while (setCopy.size() > 0) {
Set<T> max;
if (subsetsCopy.size() <= 0) {
// no set cover exists
return null;

max = maximizingSubset (setCopy, subsetsCopy) ;
if (max == null) {

// no set cover exists
return null;

subsetsCopy.remove (max) ;
setCopy.removeAll (max) ;
setCover.add (max) ;

return setCover;

public static

Approximation Algorithms

Set<Employee> awayParty (Set<String> skills, Set<Employee> employees)

{
HashMap<Set<String>, Employee> map = new HashMap<Set<String>, Employee>();
Collection<Set<String>> subsets = new LinkedList<Set<String>>();

// Kluge to recover employees from their skill sets.
for (Employee employee : employees) {

Set<String> eskills = employee.getSkills();

subsets.add(eskills);

map.put (eskills, employee);
Collection<Set<String>> cover = setCover (skills, subsets);
if (cover == null) {

return null;
// Recover employees from their skill sets.
Set<Employee> party = new HashSet<Employee>();
for (Set<String> skillSet : cover) {

party.add (map.get (skillSet));

return party;

public static void printParty (Set<Employee> party) {

if (party == null) {
System.out.println ("Empty party.");
return;

for (Employee employee : party) {
System.out.println (employee.toString());

// args[] is a sequence of skill names required for a mission.
public final static void main(String args[]) {
Employee a, b, c, d, e;
Set<String> requiredSkills = new HashSet<String>();
Set<Employee> employees = new HashSet<Employee> () ;

requiredSkills.addAll (Arrays.aslList (args));

a = new Employee ("James T. Kirk")
.addSkill ("management") .addSkill ("tactics") .addSkill ("diplomacy") ;

b = new Employee ("Spock")
.addSkill ("logic") .addSkill ("science") .addSkill ("diplomacy") ;

c = new Employee ("Leonard H. McCoy")
.addSkill ("medicine") .addSkill ("science");

d = new Employee ("Montgomery Scott")
.addSkill ("engineering") .addSkill ("management") ;

e = new Employee ("New Ensign").addSkill ("cannon fodder");

employees.add
employees.add
employees.add
employees.add

Approximation Algorithms

employees.add (e) ;

printParty(awayParty (requiredSkills, employees));

	Approximation Algorithms
	Algorithms vis-à-vis Everyday Programming
	Polynomial-Time Algorithms
	NP-Complete Problems
	The Travelling-Salesman
	Subset-Sum
	Set-Covering

