
The Trouble with Distributed Objects
Daniel F. Savarese
Last Updated: 2012-05-23

Copyright © 2003, 2012 Daniel F. Savarese1

Note

This column was published originally in the
August 2003 issue of Java Pro under the same
title. It was written when service-oriented archi-
tecture (SOA) hype was getting started and
published when the hype was in full swing. As
a result, the column generated criticism from
people who were buying into the vendor-gener-
ated hype. Programmers who had worked with
distributed programming models extensively
“got it.” Brief discussions in the straight_talk-
ing_java2 and the service-orientated-architec-
ture3 Yahoo groups show the disparity of reac-
tion. The critics must have skipped over or ig-
nored key sentences in the column that invalid-
ate their criticisms. The original column was a
required reading assignment4 for the 2005 Dis-
tributed Systems course (CS404) at Purdue
University Calumet.

My most general contention was that the in-
dustry was focusing on the wrong problems and
the new wave of standards was doing nothing
to simplify the construction of distributed sys-
tems. I'm comfortable saying that time has
proven that SOA standards touted at the time
didn't deliver on their promises. Also, the large-
scale distributed computing infrastructures that
emerged at companies such as Amazon, Google,
and Facebook have spurred the development of
distributed software programming systems that
address some of the challenges posed in this
column.

Changes. I've resisted the temptation to edit
the article to clarify points and make it more
relevant to today. As a result, I've made only
minor text edits.

Why Objects?

The benefits of object-oriented programming do not
translate from shared-memory programming to distributed
programming. It's time we face up to this problem and
look for ways to resolve it. Web services may facilitate
integration and interoperability, but they don't do much
to let you specialize component behavior to meet applic-
ation-specific requirements. If you work with distributed
object or service component frameworks on a daily basis,
you may feel that it is much too hard to build systems
that do exactly what you want done and do it exactly how
you want it done. I have felt this way for years. Let me
explain why.

Object-oriented programming delivers data encapsulation,
inheritance, and polymorphism, which promote program
understanding and code reuse through code modulariza-
tion, data type specialization, and generic programming.
The byproduct is easier-to-maintain software.

Data encapsulation hides information from the program-
mer, exposing only the operations that can be performed
on data. This design principle encourages the modular
organization of code, where related data and operations
are grouped in a single source-code file. The unit of
modularity in Java is the class.

Inheritance allows programmers to customize classes to
suit their needs without writing redundant code. Those
desired aspects of a class are retained while new behavi-
ors are introduced by adding new methods or overriding
existing ones. Java implements data type specialization
through single-class inheritance.

Polymorphism allows objects of different types to be
operated on without regard to their type. Code reuse is
promoted because a single method can be implemented
for usewithmultiple data types. Java supports polymorph-
ism through interface definition and implementation. A
method that operates on an interface will work with any
object that implements that interface. Polymorphism in
Java does not extend to primitive types. You can't imple-

1 https://www.savarese.org/
2 http://tech.groups.yahoo.com/group/straight_talking_java/messages/31855?threaded=1&m=e&var=1&tidx=1
3 http://tech.groups.yahoo.com/group/service-orientated-architecture/messages/573?threaded=1&m=e&var=1&tidx=1
4 http://cs.purduecal.edu/~rlkraft/cs404-2005/class.html

1

https://www.savarese.org/
http://tech.groups.yahoo.com/group/straight_talking_java/messages/31855?threaded=1&m=e&var=1&tidx=1
http://tech.groups.yahoo.com/group/straight_talking_java/messages/31855?threaded=1&m=e&var=1&tidx=1
http://tech.groups.yahoo.com/group/service-orientated-architecture/messages/573?threaded=1&m=e&var=1&tidx=1
http://tech.groups.yahoo.com/group/service-orientated-architecture/messages/573?threaded=1&m=e&var=1&tidx=1
http://cs.purduecal.edu/~rlkraft/cs404-2005/class.html
https://www.savarese.org/
http://tech.groups.yahoo.com/group/straight_talking_java/messages/31855?threaded=1&m=e&var=1&tidx=1
http://tech.groups.yahoo.com/group/service-orientated-architecture/messages/573?threaded=1&m=e&var=1&tidx=1
http://cs.purduecal.edu/~rlkraft/cs404-2005/class.html


ment a single method that will sort an array of ints as
well as an array of floats without resorting to dynamic
type identification and casting or reflection.5

Object-oriented programming aims to ease the implement-
ation, understanding, and maintenance of programs
through language-based program organization and
definition techniques. How well do these techniques
translate to distributed objects?

At first glance, data encapsulation appears to work rather
well in a distributed environment. Operations are grouped
by the data or resources they operate on. In addition to
relieving the programmer from having to know the
structure of data, by grouping operations with data, you
avoid having to move the data around the network. In
general, distributed resources are shared, causing opera-
tions to be modularized into service components, such
as Web services. So far so good.

Well, not exactly. In a distributed environment, data en-
capsulation conflicts with the need to specialize data type
behavior. When you use a third-party class library, you
can tailor behavior by deriving new classes with inherit-
ance and overriding methods or by applying aggregation
and wrapping a class with an adapter. Inheritance is not
an option with distributed objects. Sure, CORBA, RMI,
and the like allow the object, component, or service de-
veloper to use inheritance. But once a component is de-
ployed, they do not allow an application developer using
the remotely situated component to specialize its behavior
with inheritance. If you don't have access to both the
source code and the deployment host, you're out of luck.
Aggregation doesn't work well either, because each del-
egated method call crosses a network boundary. You're
denied direct access to state variables, forcing you to use
expensive accessor methods.

Polymorphism is achievable in some sense, but isn't as
useful as one would expect. Remote objects and services
may present compatible interfaces to the world, but
without inheritance, this feature does not achieve the
same effect as interfaces, abstract classes, and virtual
methods. At best, you get interchangeable components.
Most distributed object systems rely on interface defini-
tion languages (IDL) and automatically generated stubs
to access remote objects. Therefore, even if two objects
have matching methods with identical signatures, the
ability of your code to use them interchangeably is at the
mercy of the stub generator.

In the case of Java RMI, remote objects are invariably
forced to extend java.rmi.UnicastRemoteOb-
ject orjava.rmi.activation.Activatable.
Therefore, any polymorphism depends on all distributed
parties agreeing on the same Java interface and for client
code stubs derived from the interface implementations
to be made available to all parties. This tight coupling
makes RMI more of a client/server implementation sys-
tem than a truly distributed computing implementation
system.

Services. Not Objects.

If the benefits of object-oriented programming don't
evidence themselves in distributed computing, thenwhat's
the right approach? You're going to hear a lot of talk
about service-oriented architectures (SOA) this year, if
you haven't already. Some Web services development
vendors have come around to understanding that Web
services don't work well as objects. So they're promoting
the design of coarse-grained, loosely coupled services
interconnected by asynchronous communication. You're
also going to hear about event-driven architectures
(EDA), which are the translation of event-based program-
ming to a distributed context. The idea is that SOA is
better suited to implementing real-time business pro-
cesses, and EDA is better suited for long-running asyn-
chronous business processes. Unfortunately, there's
nothing new here.

If services are so great, why do they look so much like
objects? If Web services are most effective when not
treated as objects, why didWSDL turn into the umpteenth
coming of IDL? For that matter, why have distributed
objects always looked more like services than objects?
It's really just a semantic game. Even EDA is a bit of a
farce because event-based programming is isomorphic
to message-based programming, which is equivalent to
remote procedure calls. EDA only gets interesting when
events also provide the code to process the event—in
other words, self-servicing messages.6

The crux of the problem with distributed programming
is that we're using the equivalent of a distributed assembly
language to build distributed software. Compilers have
no knowledge of distribution. We specify interfaces
statically with interface definition languages and can
sometimes discover and invoke those interfaces dynam-
ically, but with a lot of difficulty. Services are deployed
statically and cannot be adapted by applications. In 1988,

5This ceased to be true—at least in part—after the addition of autoboxing. The extra work doesn't really go away; it's done for you by the compiler.
Also, generic programming via autoboxing in Java yields poor performance compared to equivalent template-based C++ code.
6I was doing experimental research at the time with what I called self-servicing messages. The self-indulgent reference was meant to spark the
reader's imagination.

2

The Trouble with Distributed Objects



NeXT Computer proclaimed the next step in computing
was the object and later offered the world Portable Dis-
tributed Objects (PDO). After 15 years and the reinven-
tion of countless distributed object frameworks, it's clear
there are more steps to be taken.

How do we translate the benefits of object-oriented pro-
gramming to distributed systems? I don't profess to offer
a grand solution, but I'm pretty sure we have to move
past the idea of distributing objects. Services are useful,
but let's call them services and not objects. A service is
a package of functionality that can be shared concurrently
by multiple applications.Objects have additional proper-
ties that are just not evidenced in a distributed context.

Beyond the Status Quo

The ultimate benefit we're looking for is to make distrib-
uted software development easier. An obstacle to that
goal is that distributed services don't allow applications
to adapt service behavior to meet application-specific
requirements. The object-oriented approach of inherit-
ance, coupled with reuse-enabling polymorphism, doesn't
work.

Either we have to throw services out the window or we
have to look for ways to enable services to be customized
by applications. Services appear to be a convenient
building block for distributed systems, so let's not throw
them out just yet. Even after developing ways to custom-
ize services in application-specific ways, we'll still have
an assembly language of mechanisms. To finish the job,
we'll have to add distribution abstractions to programming
languages and design compilers that generate code using
the new mechanisms. Still, the generated code must be
dynamically reconfigurable. You should not have to re-
compile an application to redistribute its elements across
a set of hosts. Orchestration server vendors will tell you
that business process modeling languages are the answer.
Business process modeling languages, however, are not
suitable for general-purpose programming.

Distributed programming presents several problems that
today are left up to programmers to resolve for them-
selves. The question of optimizing the frequency of
communication, the size of messages, and the distribution
of computation is ever present. So is the question of how
to tie together different elements of a distributed applica-
tion and allow new elements to be inserted and existing
ones removed. The research community has developed
a number of module interconnection languages for this
purpose. Service orchestration languages provide some
of the same functions. Yet they do not address the prob-
lem of mapping an interconnection of services to a

physical configuration of hosts to meet a specific set of
criteria. Services are almost always taken to be statically
placed. Perhaps the most pressing question is the one I
have talked about the most so far: How do we allow new
application-specific behavior to be applied dynamically
to distributed components?

Until all of these questions are resolved in a unified
manner, distributed programming will remain diffi-
cult—or, at best, cumbersome. Let's not remain satisfied
with the status quo.

3

The Trouble with Distributed Objects


	The Trouble with Distributed Objects
	Why Objects?
	Services. Not Objects.
	Beyond the Status Quo

