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Abstract. We introduce the concept of an N-dimensional space and
define a surface as a subset of points in that space that divides the space
into two parts. We generalize the parametric equations of a circle in
two dimensions and a sphere in three dimensions to those of the sur-
face of an N-dimensional hypersphere. Finally, we unparameterize the
equations, reducing them to a single multivariable equation of the form
F (x1, x2, . . . , xN ), and show that F > 0 corresponds to the region outside
of the hypersphere, F < 0 corresponds to the interior of the hypersphere,
and F = 0 corresponds to the surface of the hypersphere.

1. N-dimensional Spaces

Coordinates are variables grouped together for analytical purposes. We
most often relate coordinates to two- or three-dimensional physical spaces,
such as when noting the locations of chess pieces on a chess board or using
GPS (Global Positioning System) coordinates to navigate aircraft. But
coordinates need not represent physical locations. Any function of one or
more variables may be plotted as a set of points in a coordinate system. Nor
must coordinates be limited to two or three dimensions. If we were to track
the position of an object in three-dimensional space through time, we would
require four coordinates: (x1, x2, x3, t), where the first three coordinates
identify the position in space and t the position in time.

Visualizing a function in two or three dimensions helps us analyze its
properties. Although it may not be possible to do the same in higher dimen-
sions, we can project higher-dimensional artifacts onto a lower-dimensional
space to help our visually-oriented brains reason about them. Alterna-
tively, we can reason about a higher-dimensional artifact by analyzing its
lower-dimensional analogues. For example, a square has a surface (i.e., its
perimeter) formed by line segments equal in length and corners formed by
the meeting of two line segments at right angles. A cube has a surface
formed by squares equal in area and corners formed by three line segments
meeting at right angles to each other. A four-dimensional hypercube has a
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surface formed by cubes equal in volume and corners formed by four line
segments meeting at right angles to each other.

To fully generalize the analysis ofmultivariable systems, we do not restrict
ourselves to a specific number of dimensions. Instead, we work with an
unspecified positive integral number of dimensions, denoted by N . We
notate the variables of the system as a set of coordinates, (x1, x2, . . . , xN ).
A particular set of values for the coordinate variables is a point and the
universe of possible points in the system comprises anN-dimensional space.
The range of coordinate values may be finite or infinite. In either case, we
represent a space with VN .1

2. A Degenerate Case: The Circle

Before describing the surface of an N-dimensional hypersphere, we will
examine the degenerate case of the surface of a two-dimensional sphere,
commonly known as a circle. The surface of a circle is the set of all points a
constant distance—called the radius—from a central point. The circle itself
is comprised of the surface and all the points inside the surface. Therefore,
the surface divides space into two regions: points inside of the surface and
points outside of the surface. You may notice we made no reference to
the number of dimensions. It so happens that the definition applies to any
hypersphere of two or more dimensions. For the circle, we will work with
only two dimensions.

Looking at Figure 1, another way to think of a circle is that it traces out
every possible right triangle with a hypotenuse equal to the length of the
radius. The hypotenuse of each triangle extends from the center of the circle
to a point (x1, x2) on the circle’s circumference, forming an angle θ with the
x1 axis. From the trigonometric definitions of sine and cosine and a visual
analysis of the figure, we can see the following relationships:

cos θ =
x1
r

and sin θ =
x2
r
.

Solving for the coordinates in terms of the angle yields the parametric
equations of a circle,

x1 = r cos θ and x2 = r sin θ. (1)

We can use the Pythagorean theorem to arrive at the algebraic equation of a
circle directly,

x21 + x22 = r2. (2)

1We could choose any letter, but V works as a mnemonic for either vector—as in vector
space—or volume—as in if a surface VN−1 is an analogue of area, then a space VN is an
analogue of volume.
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Figure 1. The geometry behind the parametric equations
of a circle.

But let us derive it from the parametric equations so that we can benefit
from the approach later. Recognizing that sin2θ + cos2θ = 1—an identity
resulting from the Pythagorean thereom—we simplify as follows:

x21 + x22 = r2 cos2 θ + r2 sin2 θ;
= r2(cos2 θ + sin2 θ);
= r2.

Although Equations 1 and 2 should be obvious to a middle- or high-
school student who has taken a course in analytic geometry, we reviewed
them to make clear their relationship to the equations of a fully generalized
N-dimensional hypersphere in Section 4.

Before moving on, observe that for all points inside the circle, x21+x22 < r2

must be true; and for all points outside the circle, x21 + x22 > r2 must be true.
If we rewrite Equation 2 as

x21 + x22 − r2 = 0, (3)
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we can re-express the division of space in terms of the values taken on by
the resulting function,

F (x1, x2) = x21 + x22 − r2



< 0 is inside of the circle;
= 0 is on the surface of the circle;
> 0 is outside of the circle.

(4)

It should be clear that for a point to lie inside of the circle, the distance
from the center of the circle to the point,

√
x21 + x22, must be less than the

radius of the circle. Likewise, the distance must be greater than the radius
for the point to lie outside of the circle. The distance is equal to the radius
for points lying on the surface of the circle.

3. A Special Case: The Sphere

Having analyzed the equations of a circle, we canmake a similar geometric
analysis to arrive at the equations for the surface of a sphere. Whereas a
point on a circle can be located with two parameters—a radius r and an angle
θ—a point on a sphere requires three parameters—a radius r and two angles,
θ1 and θ2. The coordinate system of a circle is known as a polar coordinate
system and the coordinate system of a sphere is known as a spherical
coordinate system. We will parameterize the Cartesian coordinates of a
point on a sphere in terms of spherical coordinates before rewriting them as
a single algebraic function.

Figure 2 shows the spherical and Cartesian coordinates of a point P on a
sphere. By combining visual inspection with geometric and trigonometric
identities, we can express (x1, x2, x3) in terms of (r, θ1, θ2). First, we look
at the right triangle formed by the origin, the point P, and the projection of
P onto the x2x3 plane. The spherical radius r forms the hypotenuse of the
triangle and x1 is its height. The angle formed at point P is equal to θ1,
being the alternate interior angle formed by the x1 axis and the side of the
triangle parallel to it. Thereby we arrive at our first equation,

cos θ1 =
x1
r
, which implies x1 = r cos θ1.

The base of the triangle must then have a length equal to r sin θ1. This forms
the hypotenuse of the right triangle in the x2x3 plane, allowing us to write

cos θ2 =
x2

r sin θ1
, which implies x2 = r sin θ1 cos θ2.

Finally, the side opposite θ2 is equal to x3, giving us

sin θ2 =
x3

r sin θ1
, which implies x3 = r sin θ1 sin θ2.
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Figure 2. The geometry behind the parametric equations
of a sphere.

We now have the parametric equations of a sphere,

x1 = r cos θ1;
x2 = r sin θ1 cos θ2;
x3 = r sin θ1 sin θ2.

(5)

As with the circle, we can either use the Pythagorean theorem directly
to express the distance between two points—the origin and P—in three
dimensions, or we can derive an expression from the parametric equations.
Using the approach we used to arrive at Equation 3, we can eliminate the
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angles as follows:

x21 + x22 + x23 = r2 cos2 θ1 + r2 sin2 θ1 cos2 θ2 + r2 sin2 θ1 sin2 θ2;
= r2(cos2 θ1 + sin2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2);
= r2(cos2 θ1 + sin2 θ1(cos2 θ2 + sin2θ2));
= r2(cos2 θ1 + sin2 θ1 · 1);
= r2.

This allows us to write the spherical equivalent of Equation 4 as

F (x1, x2, x3) = x21 + x22 + x23 − r2



< 0 is inside of the sphere;
= 0 is on surface of the sphere;
> 0 is outside of the sphere.

(6)

4. The General Case: An N-dimensional Hypersphere

Based on the circle and the sphere, we can infer that a point on the
surface of an N-dimensional hypersphere can be located with a radius r and
N − 1 angles, written as (r, θ1, θ2, . . . , θN−1). Alternatively, one can use N
coordinates corresponding to the position along N mutually perpendicular
axes, written as (x1, x2, . . . , xN ). The angles and perpendicular axes create
the same trigonometric relationships as in the lower-dimensional cases. For
example, a four-dimensional hypersphere’s coordinates can be written as
(r, θ1, θ2, θ3) or (x1, x2, x3, x4), producing the following equations:

x1 = r cos θ1;
x2 = r sin θ1 cos θ2;
x3 = r sin θ1 sin θ2 cos θ3;
x4 = r sin θ1 sin θ2 sin θ3.

(7)

These can be generalized to N dimensions as follows:

x1 = r cos θ1;
x2 = r sin θ1 cos θ2;
x3 = r sin θ1 sin θ2 cos θ3;
· · · = · · · ;

xN−1 = r sin θ1 sin θ2 cos θ3 . . . sin θN−2 cos θN−1;
xN = r sin θ1 sin θ2 cos θ3 . . . sin θN−2 sin θN−1.

(8)
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Using the same technique we used to arrive at Equations 4 and 6, we
eliminate the angles, producing

x21 + x22 + x23 + · · · + x2N−1 + x2N = r2(cos2 θ1 + sin2 θ1(cos2 θ2+

sin2 θ2(cos2 θ3 + sin2 θ3(. . .

(cos2 θN−2 + sin2 θN−2(cos2 θN−1+

sin2 θN−1))))));

x21 + x22 + x23 + · · · + x2N−1 + x2N = r2.

Wecan nowwrite the general equation for the surface of anN-dimensional
hypersphere as

F (x1, x2, . . . , xN ) =
N∑

i=1
x2i − r2




< 0 is inside of the
hypersphere;

= 0 is on the surface of the
hypersphere;

> 0 is outside of the
hypersphere.

(9)

Throughout this presentation we have assumed the origin of the coordi-
nate system is the center of the hypersphere. In order to account for the
center being located at an arbitrary point (x10, x20, . . . , xN0 ), we can further
generalize the equation for the surface of a hypersphere as

F (x1, x2, . . . , xN ) =
N∑

i=1
(xi − xi0 )

2 − r2 = 0. (10)


