Why and How I Use LilyPond

Daniel F. Savarese
Version 1.1
Copyright © 2018 Daniel F. Savarese'

Introduction

In June 0f 2017, I received an email from someone using
my classical guitar transcriptions inquiring about how I
use LilyPond2 to typeset (or engrave) music. He was
dissatisfied with his existing WYSIWYG?® commercial
software and was looking for alternatives. He was im-
pressed with the appearance of my transcription of Lda-
grima and wondered if I would share the source for it
and my other transcriptions.

I sent the inquirer a lengthy response explaining that I'd
like to share the source for my transcriptions, but that it
wouldn't be readily usable by anyone given the rather
involved set of support files and programs I've built to
support my music notation efforts. I never heard back
from the inquirer and don't know if he even received my
1reply.4 Perhaps he was discouraged by the amount of
work LilyPond appeared to require.

Given the time and effort I spent crafting my explanation
of my use of LilyPond, I decided in January of 2018 to
edit and expand my email reply into this article to share
with anyone who may be considering using LilyPond,
especially for notating guitar music. In this article, I ex-
plain why I use LilyPond and how I use LilyPond, along
with a high-level summary of the support tools I have
built to streamline the engraving process.

Why I Use LilyPond

Many years ago, before the LilyPond project existed, a
few attempts had been made to implement music engrav-
ing features on top of TeX, Donald E. Knuth's widely
used (at least in academia) typesetting program. I tried
using some of those programs and macro packages, but
they were very limited in function. [wanted to use music
engraving software, not spend my time developing it.
That's how I got started using Finale, the commercial
music notation software from Coda Music Technology,
which was later bought by Net4Music SA (eventually
becoming MakeMusic, Inc.). It cost me an arm and a leg,

! https://www.savarese.org/

even with an academic discount. [never got my money's
worth out of it. At the time I couldn't explain exactly
why, but I was never productive using it.

Years later, when I started playing piano, I upgraded to
the latest version of Finale and suddenly found it easier
to produce scores using the software. It had nothing to
do with new features in the product. After notating eight
original piano compositions, | realized that my previous
difficulties had to do with the idiosyncratic requirements
of guitar music that were not well-supported by the soft-
ware. Nevertheless, note entry and the overall user inter-
face of Finale were tedious. I appreciated how accurate
the MIDI playback could be with respect to dynamics,
tempo changes, articulations, and so on. But I had little
need for MIDI output.

Searching for software that would let me generate scores
more rapidly, I tried Sibelius, the British music notation
software produced by Sibelius Software Ltd. that later
became a part of Avid Technology. I immediately found
Sibelius much easier to use. Most important, I found I
could notate guitar music with much less difficulty. That
is, with a caveat: Sibelius required a lot of customization
to support guitar notation. Once I made those customiza-
tions, I was more productive. But as with all WYSIWYG
programs that use proprietary binary file formats, there
were problems I just couldn't live with.

Version Control

Version control is difficult with binary file formats. If
you use a general purpose version control system, per-
forming a diff> won't show you what notes or markup
changed. If you use an application-specific version con-
trol system, such as the one included with Sibelius, you
can only examine changes graphically; and you can't in-
tegrate with the the revision control system you may be
using for a larger parent project without maintaining a
duplicate versioning tree.

2LilyPond [http://www.lilypond.org/] is an open source text-based music engraving program.
3What You See Is What You Get (i.e., software with a graphical as opposed to a text-based user interface).
“It has unfortunately become quite common for valid email to be silently misclassified as spam by the major email service providers.

A command that shows all of the differences between two text files.

https://www.savarese.org/
Lagrima.html#music.arrangements.Lagrima
Lagrima.html#music.arrangements.Lagrima
https://www.savarese.org/
http://www.lilypond.org/
http://www.lilypond.org/

Why and How I Use LilyPond

LilyPond relies on text input files, allowing you to use
the same revision control system you use for all of your
other projects.

Music Reuse

Repeating music without having to copy it is awkard at
best in WYSIWYG programs. Some programs have a
feature that allows you to make a dynamically updated
copy of a set of measures, but it is cumbersome and in-
flexible. Including music or music fragments from a
single source in multiple projects is largely impossible.

LilyPond allows you to store music fragments in macro
variables that you can reference multiple times. You can
even selectively turn off decorations on each macro in-
stantiation. For example, if the first appearance of a
measure includes fingering, you can turn it off for the
later appearances by defining a new macro that turns off
fingering before referencing the original macro and turns
it back on afterward. Including music in multiple projects
is also easy, but requires you to think ahead with respect
to how you organize your files and name your variables.
I'll discuss this issue in the “how” section.

Single Source, Multiple Qutputs

Generating multiple outputs from same source using
commercial software is largely impossible. You generally
have to maintain two separate files with different
formatting.

With LilyPond (and my custom preprocessor), I can
generate guitar music that uses roman numerals for posi-
tions and barres or arabic numerals without making any
changes to the source file (cf. Llobet's Preludio (en re

mayor)).
Part Extraction

Part extraction is an inconvenience that essentially re-
quires you to format a piece of music an additional time
for each extracted part. There is no need for part extrac-
tion when using LilyPond. As long as you organize your
project with different parts in different files—or at least
different parts in different variables—you can generate
a score for a subset of parts with little effort. Your parts
are not tightly bound together. Therefore, they need not
be extracted.

File Format

I also had concerns about the longevity and interoperab-
ility of the propietary file formats and found that Mu-
sicXML lost too much information to be a viable export
format. As already mentioned, I wanted a text-based
format that could be versioned using the same source
code revision control system(s) I use for software devel-
opment. Of course, it needed to produce professional-
calibre output, but flexibility and customizability were
higher priorities. LilyPond met most of my requirements
and seemed to be able to be molded into doing whatever
I needed via its embedded Scheme language or via pre-
processing. All that said, LilyPond does not do “the right
thing” out of the box (except perhaps for piano music).
With respect to guitar notation, just like Sibelius, Lily-
Pond requires a lot of customization—an issue I'll address
shortly.

How I Use LilyPond

LilyPond is no panacea, especially when it comes to
guitar notation. Over the years, I have developed an ex-
tensive set of functions and macros to support the engrav-
ing process and I'm still not done. My customization lib-
raries are roughly divided into a common set of instru-
ment-independent functions, macros, and default
formatting directives and a set of instrument-specific in-
clude files. I've also had to write a compiler wrapper,
dependency generator, and score file generator all of
which are used by a build system that ties everything to-
gether.

Libraries

At the base of the library tree sits use. i1y.® which
defines a custom \use function that includes a file only
once if it has already been included. The standard Lily-
Pond \include will re-include a file, which causes
tremendous problems when you try to reuse music from
different files—re-inclusions can blow the stack and crash
the program. The \use function is automatically available
to all source files by way of lye, a compiler script that
wraps the lilypond command with various options and
preprocessing. Therefore, no source files ever use \ in-
clude directly; they all use \use instead. The only use
of \include is the statement dynamically inserted by
lyc to include a common preamble that at the moment
only consists of use.ily.

®This used to be called import.ily,butithad to be renamed after it was found to conflict with the Guile 2.0 import REPL command. Technically,
there is no use.ily file. There are use-v1.1ily and use-v2.11ly files that are used for Guile 1.8 and Guile 2.x respectively. The \use
function must be implemented differently depending on the version of Guile being used by LilyPond. All of this is hidden from the user, so we treat

the implementation conceptually as a single use . 11y library file.

PreludioEnReMayor.html#music.arrangements.PreludioEnReMayor
PreludioEnReMayor.html#music.arrangements.PreludioEnReMayor

Why and How I Use LilyPond

The next layer in the library tree is a common library,
defining instrument-independent customizations, includ-
ing custom markup functions, convenience macros, de-
fault layout and paper definitions, as well as numerous
additional customizations. In some sense, the default
settings in the common library file constitute a style (e.g.,
default margins, fonts, etc.), but I treat each piece indi-
vidually and adjust staff size, spacing, and margins, on
a per-piece basis. For a collection of works, I try to keep
the styling parameters as consistent as possible. From
there, the library tree branches into classes of instruments
(e.g., strings) and then specific instruments (e.g., violin
or guitar). For classical guitar, I have custom functions
for rendering barre, position, and string indications as
well as macros for right-hand fingering.

Tools and Build System

I use a build system based on GNU autoconf and auto-
make which generates a GNU make Makefile. In ad-
dition to lye, the compiler script I mentioned, I have
written lydep, a dependency generator that figures out
all of the dependencies for a given source file in a manner
compatible with GNU make. That way, the Makefile
can rebuild exactly what needs to be rebuilt when a given
source file changes. For example, if a library file is
modified, then all scores that directly or indirectly import
that file are rebuilt. The dependency generator takes into
account LilyPond \ include directives and my custom
\use directives.

Finally, I have written lygen, a tool that generatesa . 1y
source file from a high-level description of the score im-
plemented as a Lua’ table. For example, my score file
for Lagrima looks like this:

return {
source = "Lagrima.ily",
document = "score",
instrument = "guitar",
namespace = "g tarrega_ lagrima",
options = {
subtitle = true,
remove_empty staves = true,
paper = {
top margin = "0.75\\in",

bottom margin = "0.75\\in"

}

}

As you can see, the file contains no LilyPond markup.
All the music goes in Lagrima.ily, which I will de-
scribe in my discussion of namespaces in the next subsec-
tion.

"Lua [https://www.lua.org/] is an interpreted programming language.

Tips

Perhaps the most important practice to apply when using
LilyPond is not to pollute the global namespace. Assign
each element of your score to a variable and name all of
the variables with a unique score-specific prefix. If you
place music in the global namespace, you can't reuse it
elsewhere. You'll notice the cryptic “g_tarrega lagrima”
assigned to the namespace parameter in Lag-
rima.ly.lua above. That's a namespace prefix. Lily-
Pond has no notion of namespaces, requiring you to ap-
proximate them via variable naming conventions. If you
write a bunch of scores and decide you want to collect
them into a book or if you want to include music from
one file into another, you'll find it won't work if you used
global artifacts. You must avoid polluting the global state.
Everything should be encapsulated. My Lagrima.ily
source file looks like this (without the data):

\use "classical guitar.ily"

g_tarrega_lagrima title = ...

g_tarrega_lagrima subtitle = ...
g _tarrega lagrima composer = ...
g_tarrega_lagrima copyright = ...

% Separate out first part so we can use
% reference it for midi output.

g_tarrega_lagrima voice one a = { ... }
g_tarrega_lagrima voice one b = { ... }

g_tarrega_lagrima voice one = {
\repeat volta 2 {
\g_tarrega_lagrima voice one_a
bl
\g_tarrega_lagrima voice one b

}

g_tarrega_lagrima voice two a = { ... }
g_tarrega_lagrima voice two b = { ... }
g_tarrega_lagrima voice two = {

\repeat volta 2 {
\g_tarrega_lagrima voice two_a

bl

\g_tarrega_ lagrima voice two_ b

}
g_tarrega_lagrima voice three a = { ... }

g_tarrega_lagrima voice three b

Il
—~
-

g_tarrega_lagrima voice three = {
\repeat volta 2 {
\g_tarrega lagrima voice three a
b

\g_tarrega lagrima voice three b

Lagrima.html#music.arrangements.Lagrima
https://www.lua.org/
https://www.lua.org/

Why and How I Use LilyPond

}

g tarrega lagrima ossia = { ... }

g tarrega lagrima ossia staff = { ... }
g tarrega lagrima music body = { ... }

g _tarrega lagrima score body = {
\new Staff = "main" {
\guitar clef

\key e \major

\time 3/4

\tempo "Moderato™ 4 = 90
\set Timing.beamExceptions =

\tag midi {
\unfoldRepeats
\g_tarrega lagrima music body

}

\tag nomidi \g tarrega lagrima music body

}

Other than the \use, there are no directives at the global
scope. Everything is assigned to a variable.

Another essential practice is to notate voices separately.
Never use \parallelMusic. Because WYSIWYG
programs facilitate entering music measure by meas-
ure—and when you transcribe a piece from lute tablature,
for example, you tend to go measure by measure instead
of voice by voice—I started using LilyPond with \par-
allelMusic. That was a big mistake. It took a very
long time to convert all of that music to separate voice
blocks. \parallelMusic doesn't work well with many
LilyPond features, making a lot of things not work or
simply render incorrectly. I didn't have the presence of
mind to realize that if I wanted to enter music measure
by measure easily, I could keep all of the voices in separ-
ate blocks and simply split my text editor into different
editing regions, one per voice. Once I did that, entering
music measure by measure or voice by voice was simple.
I could see the notes for all the voices in a single measure
at the same time.

Along with notating voices separately, you absolutely
must number your measures with a comment preceding
each measure. Otherwise, locating your place in a piece
of music becomes difficult and version control diffs be-
come indecipherable.

One of the worst aspects about Finale and Sibelius is
having to adjust every little thing by hand. Right-hand
fingering was rarely automatically placed pleasingly
(LilyPond does much better) and good luck repeating a
section of music elsewhere without the fingering without
having to copy it. With LilyPond, you still have to make

adjustments with \tweak, but it's clear exactly what
you've adjusted manually and by how much. Also, when
repeating a section of music somewhere, you can simply
reference a macro variable. If you want to repeat the
section without fingering, there's no problem. Just disable
the fingering before the section and enable it afterward.

Is LilyPond for you?

If at the outset I had realized how much code 1 would
have to write to do everything I needed, I probably
wouldn't have used LilyPond. At the same time, I don't
think MuseScore or other open source alternatives would
have met my needs. I would have eventually turned to
LilyPond accepting how much work I'd have to do.

As I've mentioned, LilyPond requires a lot of customiza-
tion for guitar notation. Chord diagrams can probably be
made easy after a lot of up-front work creating a library.
I've thought of auto-generating a chord diagram library
from a high-level description in Lua or JSON. Tablature
is so easy with the WYSIWYG programs that I always
provided it (although part extraction to generate a non-
tablature edition was a bit of a pain). With LilyPond,
tablature can get quite messy if the defaults aren't what
you want. You have to enter a lot of string number indic-
ations and turn off string number rendering for the ones
you don't want rendered. At the time I started using
LilyPond, I didn't want to go to any extra effort to gener-
ate tablature (because I don't use it). But now that I think
about it, one could write a music event function that
conveys the string number without rendering it, and use
that for tablature. Another alternative is to use tags. Still,
there are some pieces that would require you to specify
a string number for just about every note; not something
I would want to do.

If you are comfortable with the WYSIWYG experience,
I'd recommend looking at other WYSIWYG alternatives
before considering LilyPond. You may have noticed one
reason I haven't given for why I use LilyPond. I've never
said “LilyPond produces more beautiful output than fill
in the blank.” That is because virtually all of the major
music notation software packages produce readable mu-
sic. Whether one is much better than another is very
subjective. Unless you love LilyPond output, I would not
recommend using it solely for aesthetic reasons. Produ-
cing a beautiful score with LilyPond requires effort and
doesn't just happen automatically.

If you don't have experience with programming and the
fundamentals of modularization, program organization,
and project organization, you should probably delay using
LilyPond until you've acquired some of those skills. Even

Why and How I Use LilyPond

if you're prepared to learn gradually as you use the soft-
ware, | can easily see someone with no programming
experience hitting a brick wall when the only way to
solve a problem is to write a Scheme function. Most of
LilyPond's shortcomings can be overcome via its extens-
ibility features. But if you can't understand how to use
them, they may as well not exist.

Revision History

Revision 1.1 2018-05-09
Changed import to use.

Revision 1.0.1 ~ 2018-02-07

Added measure number comments tip.
Revision 1.0 2018-01-30

First draft.

	Why and How I Use LilyPond
	Introduction
	Why I Use LilyPond
	Version Control
	Music Reuse
	Single Source, Multiple Outputs
	Part Extraction
	File Format

	How I Use LilyPond
	Libraries
	Tools and Build System
	Tips

	Is LilyPond for you?
	

